Exercise 6

The kinetic energy of rotation of the rigid structure in Exercise 5 is

$$
K=\sum_{v} \frac{1}{2} m_{v}\left(\dot{\mathbf{R}}_{v} \cdot \dot{\mathbf{R}}_{v}\right)
$$

where $\dot{\mathbf{R}}_{v}=\left[\mathbf{W} \times \mathbf{R}_{v}\right]$ is the velocity of the v th particle. Show that

$$
K=\frac{1}{2}(\boldsymbol{\Phi}: \mathbf{W} \mathbf{W})
$$

Solution

Start off by substituting $\mathbf{W} \times \mathbf{R}_{v}$ for $\dot{\mathbf{R}}_{v}$ in the expression for K.

$$
K=\sum_{v=1}^{N} \frac{1}{2} m_{v}\left(\dot{\mathbf{R}}_{v} \cdot\left[\mathbf{W} \times \mathbf{R}_{v}\right]\right)
$$

The point of only substituting it into the second $\dot{\mathbf{R}}_{v}$ is so that we can use the following triple-product vector identity.

$$
\mathbf{A} \cdot[\mathbf{B} \times \mathbf{C}]=\mathbf{B} \cdot[\mathbf{C} \times \mathbf{A}]
$$

Doing so gives us

$$
K=\sum_{v=1}^{N} \frac{1}{2} m_{v}\left(\mathbf{W} \cdot\left[\mathbf{R}_{v} \times \dot{\mathbf{R}}_{v}\right]\right) .
$$

Replace $\dot{\mathbf{R}}_{v}$ with $\mathbf{W} \times \mathbf{R}_{v}$.

$$
K=\sum_{v=1}^{N} \frac{1}{2} m_{v}\left(\mathbf{W} \cdot\left[\mathbf{R}_{v} \times\left[\mathbf{W} \times \mathbf{R}_{v}\right]\right]\right)
$$

Now make use of the BAC-CAB vector identity.

$$
\mathbf{A} \times[\mathbf{B} \times \mathbf{C}]=\mathbf{B}(\mathbf{A} \cdot \mathbf{C})-\mathbf{C}(\mathbf{A} \cdot \mathbf{B})
$$

The equation becomes

$$
K=\sum_{v=1}^{N} \frac{1}{2} m_{v}\left(\mathbf{W} \cdot\left[\mathbf{W}\left(\mathbf{R}_{v} \cdot \mathbf{R}_{v}\right)-\mathbf{R}_{v}\left(\mathbf{R}_{v} \cdot \mathbf{W}\right)\right]\right) .
$$

Move \mathbf{W} to the right side and bring $1 / 2$ out of the sum.

$$
K=\frac{1}{2} \sum_{v=1}^{N} m_{v}\left(\left[\left(\mathbf{R}_{v} \cdot \mathbf{R}_{v}\right) \mathbf{W}-\mathbf{R}_{v}\left(\mathbf{R}_{v} \cdot \mathbf{W}\right)\right] \cdot \mathbf{W}\right)
$$

We can write \mathbf{W} in terms of the unit tensor $\boldsymbol{\delta}$ as $\boldsymbol{\delta} \cdot \mathbf{W}$. This will be shown now.

$$
\begin{aligned}
\boldsymbol{\delta} \cdot \mathbf{W}=\left(\sum_{i=1}^{3} \sum_{j=1}^{3} \boldsymbol{\delta}_{i} \boldsymbol{\delta}_{j} \delta_{i j}\right) \cdot\left(\sum_{k=1}^{3} \boldsymbol{\delta}_{k} W_{k}\right)=\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \boldsymbol{\delta}_{i}\left(\boldsymbol{\delta}_{j} \cdot \boldsymbol{\delta}_{k}\right) \delta_{i j} W_{k} & =\sum_{j=1}^{3} \sum_{k=1}^{3} \boldsymbol{\delta}_{j}\left(\boldsymbol{\delta}_{j} \cdot \boldsymbol{\delta}_{k}\right) W_{k} \\
& =\sum_{j=1}^{3} \sum_{k=1}^{3} \boldsymbol{\delta}_{j} \delta_{j k} W_{k} \\
& =\sum_{k=1}^{3} \boldsymbol{\delta}_{k} W_{k} \\
& =\mathbf{W}
\end{aligned}
$$

Hence,

$$
K=\frac{1}{2} \sum_{v=1}^{N} m_{v}\left(\left[\left(\mathbf{R}_{v} \cdot \mathbf{R}_{v}\right)[\boldsymbol{\delta} \cdot \mathbf{W}]-\mathbf{R}_{v}\left(\mathbf{R}_{v} \cdot \mathbf{W}\right)\right] \cdot \mathbf{W}\right)
$$

Factor out W.

$$
K=\frac{1}{2} \sum_{v=1}^{N} m_{v}\left(\left[\left\{\left(\mathbf{R}_{v} \cdot \mathbf{R}_{v}\right) \boldsymbol{\delta}-\mathbf{R}_{v} \mathbf{R}_{v}\right\} \cdot \mathbf{W}\right] \cdot \mathbf{W}\right)
$$

Bring m_{v} and the sum inside the two dot products.

$$
K=\frac{1}{2}\left(\left[\sum_{v=1}^{N} m_{v}\left\{\left(\mathbf{R}_{v} \cdot \mathbf{R}_{v}\right) \boldsymbol{\delta}-\mathbf{R}_{v} \mathbf{R}_{v}\right\} \cdot \mathbf{W}\right] \cdot \mathbf{W}\right)
$$

Note that

$$
\boldsymbol{\Phi}=\sum_{v=1}^{N} m_{v}\left\{\left(\mathbf{R}_{v} \cdot \mathbf{R}_{v}\right) \boldsymbol{\delta}-\mathbf{R}_{v} \mathbf{R}_{v}\right\}
$$

is the moment-of-inertia tensor, so the expression for the kinetic energy simplifies to

$$
K=\frac{1}{2}([\boldsymbol{\Phi} \cdot \mathbf{W}] \cdot \mathbf{W}) .
$$

This can be written with the double dot product by considering the dyadic product WW. Therefore,

$$
K=\frac{1}{2}(\boldsymbol{\Phi}: \mathbf{W W}) .
$$

